dan

‘nvironment

~

ommunication in
|

ible

(
F

—

o

-
-
—
~ [
——
-

1
ni

I
U

i s bl S e,

B T TR s e YW TP T T
; % (I T ¢
J A, 2

/A~

Reliable Communication in an
Unreliable Environment!

Kenneth P. Birman
Thomas A. Joseph

f TR 85-694

July 1985
(Revised September 1985.)

Department of Computer Science

Cornell University
DTIC

[thaca. NY 14353
=CTE

e

Fhi= work was supported by the Detonse Advanced Rescaren Progeets Neenes s Dol arder
ARP N order 3373, Contract DA903-35-C 0124 aned by the \. tionat Serenee Founeanion
under crant DCR 3412532 The views, opintons and tndings contained in this report are
those ol 'ha author and ~hould not be construed as= an ofieral De partment of Detense position,
poiicy, or decision

This document has besn approved |

for public relecse and sale; it

dlstribution o unlimitedh 5 }
i

QRE Yy~ A U I g R e o e, B e B N e End T ot Felt Yo (e Tt S T S 7 60 B N S S ks Bt 5o G S S0 . O USSP o N B I TR R R N0 T BRSO e W
AR ST S SATNERTE

Reliable Communication in an Unreliable Environment

Kenneth P. Birman and Thormas A. Joseph!

Department of Computer Science
Cornell University, Ithaca, New York

ABSTRACT

We report on the design and correctmess of a communication fadility for a distributed com-
puter system. The fadlity provides a variety of broadcast protocols, which are used to transmit
messages reliably to sets of destination processes. These protocols attain high levels of con-
currency while respecting application-spedific ordering constraints. They also ensure that processes
observe consistent orderings of events, including process failures and recoveries. A review of
several uses for the protocols in a large fault-tolerant program illustrates the simplification of
higher-level algorithms made possible by our approach.)

P

TECHNICAL REPORT TR85-694 :
N Ul
0

Distibution]

——

Avaiiabiity Codes

R

s

. AVdi g (,'/or
Di-t { Sp . cal

—

“This work was supparted by the Defense Advanced Research Projects Agency (DaD) under ARPA arder 5378,
Contract MDA903-85-C-0124, and by the Natonal Science Foundation under gramt DCR-8412582. The views, opinions 1
and findings cont2ined in this repart are those of the authars and should nox be construed as an official Deparument of]
Defense position, palicy, or dedision.

T R TS TV e T WS LWl P T — P et aures grat IV IR Sy afhd au _alh avi mutd sash asu Sfush e ae T T v v

1. Introduction

This paper presents a set of communication primitives for supporting distributed computa-
tions in an environment where failures could occur. We are primarily concerned with halting
failures, whereby a process stops executing without performing any incorrect actions. Each distri-
buted computation is represented as a set df events operating on a process-state and a partial
order on those events, corresponding to the thread of control. The types of events considered
include local computations by a process, broadcasts from a process to a set of processes, broad-
casts subject to predetermined ordering constraints, process failures, and recoveries.

Our premise is that event orderings should be subsumed into the communication layer of a
distributed system. In addition, since increasing concurrency generally improves performance in
distributed systems, we ask how much communication-level concurrency can be achieved while still
respecting event ordering constraints specified by the computations. An important feature of our
approach is that it enables a process to make assumptions about the event orderings that will be
observed by other processes in the system. This simplifies higher-level code by making event ord-
erings more predictable, and permits distributed computations to be implemented with reduced
risk of inconsistent actions being taken.

An example wil] illustrate the class of problems that are addressed here. Consider a process
p that is updating a replicated data item maintained by a set of data managers. Assume that this
update is performed using a reliable broadcast: if any data manager receives the broadcast and
remains operational, ail data managers will receive it. If p fails, a data manager could observe

any of several outcomes:

1. The data manager receives the update and then detects the failure.
2. It detects the failure and receives the update later.
3. It detects the failure and the update is not delivered (anywhere).

It may be difficult for a data manager to distinguish cases 2 and 3. Moreover, if some data

managers experience the first outcome and others the second one, the system must still behave

.......................................
.....................

Ch 2t Sl AU i St e b Ang X e mase e aage e 4

correctly. One way to address problems such as these is for each process to run an agreement
protocol to decide on what action to take after it detects a failure [Skeen-a]. This approach could
be slow because it is synchronous, and expensive because each process has to run such a protocol.
Another possibility is to discard messages that are received by a process after it has learned that
the sender has failed. However, inconsistencies may arise if messages are discarded by one pro-
cess but retained by another one that learns of the failure later. A third alternative, representative
of the general approach of this paper, is to construct a broadcast protocol that orders messages
relative to failure and recovery events such that these problems do not arise. Using the primitives
we' develop here, a data manager can perform an update immediately upon receiving the
corresponding message, because it is guaranteed that all other data managers will receive the mes-
sage. It can take a recovery action immediately after detecting a failure, because no other data
manager will observe an inconsistent ordering of events. The primitives also ensure that every
data manager experiences the same sequence of events; this makes programming a computation
that performs such distributed updates easier.

The remainder of the paper is structured as follows. Section 2 discusses the presumed

environment in more detail. Section 3 describes the communication primitives, and section 4 gives
protocols to implement them in a local network. Finally, section S applies the primitives to a

fault-tolerant system that we have implemented at Cornell.

2. System model

i A distributed system is modelled as a collection of processes possessing local states and com-
fo municating by messages. Processes do not share memory or maintain synchronized clocks. The
- term failure denotes a halting failure: a process ceases execution without taking any (visible)
incorrect or malicious actions [Schlichting]. No information survives a failure (by fault-tolerance
é we refer to continued operation in the presense of failures, not recovery from “stable” storage). If
‘ the site at which a failed process was executing remains operational, we assume that the failure is

! | detected (e.g. by the operating system) and that any interested parties are notified. On the other

'''
...

ChAe 0 e iacaRaiAn Jhhe f h A S RN SAn 8 te Sms Mide oo s bes b g TV YA Yy

hand, if a sites crashes, all the processes executing on it fail, and processes at other sites can only
detect this by timeouts. The communication system can also fail: it can lose and duplicate mes-
sages, or deliver them out of order. Our protocols block, but do not take erroneous actions, if the
system partitions into subgroups of sites within which communication remains possible but between
which it is degraded or impossible.

Qlearly, failure detection by timeout cannot be more reliable than the underlying communi-
cation system: a series of message losses can always mimic a failure. Moreover, the order in
which failures are perceived to have occurred may vary from process to process. These observa-
tons lead us to adopt a logical approach tc failure handling, rather than a physical one. That is,
instead of a process acting directly after it detects a failure, which could lead to inconsistent
actions, a protocol is run to reach agreement with other processes that a failure event has

occurred, and to order it with respect to other events. This is meaningful because we have the

freedom to pretend that events like message delivery took place either before or after the failure,
provided that no evidence to the contrary survived it. The basic property of a logical failure is
that after a process learns of such an event or observes the relative ordering of such events, it will

never communicate with another process whose state is inconsistent with this information.

3. The communication primitives

This section first defines two broadcast primitives, BCAST and OBCAST, and describes their
behavior in the absence of failures. Failures and recoveries are then included by treating them as
a third type of broadcast, GBCAST. All the broadcast primitives are atomic, that is, a broadcast
made to a set of processes is either received® by all operational processes, or by none at all, even
in the presence of failures. Each broadcast B has a unique identifier, which we denote as ID(B).
The process that initiates a broadcast B is denoted SENDER(B), while the set of processes to

which B is sent is denoted DESTS(B).

Reception is understood to include the indirect observation of a message. For example, if process p receives a i
message m, communicates with process ¢, and then fails, the state of ¢ may reflect the contents of m. To keep the sys-

r_“‘ W T e T

W T a w w g T v

3.1. The BCAST primitive

Consider a set of processes that maintain copies of a replicated data structure that represents
a queue. If items are inserted into and removed from each copy of the queue in the same order,
no inconsistencies will arise among copies. The BCAST primitive is provided for applications such
as this, where the order in which data are received at a destination must be consistent with the
order at other destinations, even though this order is not determined in advance. A BCAST is
invoked as BCAST (msg, label, dests), where msg is the message to be broadcast, label is a string
of characters, and dests is the set of processes to which the message must be delivered. BCAST":
are atomic: every operational destination receives msg, or none does. In addition, if two BCAST's
with the same label have destinations in common, they will be deliversd in the same order at all
overlapping destinations. The replicated queue describec above can thus be implemented by using
BCAST’s to broadcast insert or delete msmxctxom to the various copies, using a queue-id for the

BCAST label.

3.2. The OBCAST primitive

For some applications, it is not sufficient that broadcasts are received in the same order at
overlapping destinations - it is also necessary that this order be the same as some predetermined
one. On the other hand, a consistent delivery order for messages originating in unrelated senders
may be less important. As an example, consider a computation that first sets copies of a repli-
cated variable to zero and later increments the variable. Here, it is not enough for the two opera-
tons be carried out in the same order at all copies - the increment must always occur second.
However, if independent computations were to access such a replicated variable, some other
method would normally be used to synchronize the accesses, making it unlikely that the both
would broadcast updates concurrently. The ordered broadcast primitive, OBCAST(msg, olabel,
dests) is used to enforce a delivery ordering desired by a single sender process, but with minimal
synchronization. Here, olabel is a label that can be compared with other olabels using a system-

tern state consistent, unless process ¢ also fails, m must be delivered to all its destinations.

R Y Y W W T N T T T I T T T LT E TN A YT A e - A~

L
?
e
4
'd
‘4

wide algorithm, to yield a partial order on OBCAST's. We write olabel, & olabel,, if olabel, and
} olabel, are comparable, and olabel, is less than olabel,. Note that we allow for olabels to be
incomparable, that is for neither olabel, olabel, nor olabel, % olabel, to hold. We use
OLABEL(B) to represent the olabel of broadcast B, and for brevity write B % B’ to mean
OLABEL(B) > OLABEL(B’). An application uses olabel’s to indicate the order in which broad-

casts should be delivered.

What constraints do olabei’s place on the order of broadcast deliveries? Some orderings
specified by olabels are trivially satisfied. For example, if two OBCAST's have no destinations in
common, there is nd actual constraint on the order of message delivery, regardless of how their
labels may compare. On the other hand, some spedifiable orderings are unenforceable. An
OBCAST with an olabel less than one that has already been delivered clearly cannot be delivered
in the desired order. This calls for a restriction on allowable olabels. Fortunately, most applica-
tions require an order to be enforced between two broadcasts only if the outcome of one could
causally affect the other. The notion of potential causality in an asynchronous distributed system
in which information is exchanged only by transmitting messages is studied in [Lamport). In such
a system, a broadcast B is said to be potentially causally related to a broadcast B’ only if they were
sent by the same process and B’ occurred after B, or if B was delivered at SENDER(B') before B’
was sent (or there is a chain of such receivers and senders linking B to B’). We restrict labels on
OBCASTS to disallow OLABEL(B') from being less than that of OLABEL(B) if they have thz same

sender and B’ is sent after B, or if B was delivered at SENDER(B’) before B’ was sent’. This is

not a major restriction because such orderings cannot be enforced unless the system has knowladge
of which future broadcasts a broadcast must wait for. Note, however, that in general OBCAST !
will not provide the sort of consistent delivery orderings given by BCAST: it satisfies a weaker ord-]

ering constraint.

™More accurately, if a broadcast is labeled in this way, the OBCAST primitive does not guarantee that this arder
will be observed.

O N N R G Y N T W v T ey rwee—w P W Y Wy

A broadcast primitive could be designed that orders any two broadcasts that are potentially
causally related. This is stronger than necessary, however. Consider a broadcast B made by a
process p to update copies of a replicated variable x. Let this be followed by a broadcast B’ by p
to update copies of y. Even though there is a potential causal relation between B and B’ because
B’ occurred after B, there may be no real causal relation between them. In such cases, there
would be no reason to order the delivery of B before that of B’. Unecessarily ordering such
broadcasts is inefficient because it limits the possible concurrency in the system. The OBCAST
primitive uses olabels 1o identify which causal relationships are significant and should be observed.
Essentially, it orders broadcasts relative to each other if they are potentially causal and if the ola-

bels indicate that the potential causal relationships are significan..

We now formally define the ordering properties of OBCAST’s. Given & as above, let the

relation precedes between OBCAST's be the transitive closure of the following two relations:
A. B precedes B' if B % B’ and the same process p sends B before it sends B'.

B. B precedes B’ if B ™ B' and B is delivered at SENDER(B') before B’ is sent.
Then OBCAST’s have the following properties. They are atomic, and if B precedes B', then B is

delivered before B’ at any overlapping destination.

The OBCAST primitive may seem to be too weak because it cannot enforce orderings that
may be desired between broadcasts that are not potentially causal. Consider a process p that
instructs a set of devices, “place wine bottles under taps,” and a process ¢ that orders, “open
taps”. Clearly, it is desirable that the first broadcast be delivered everywhere before the second.
However, in an asynchronous system in which there is no upper bound on message delivery times,
the only way this can be implemented without wasting a lot of wine is to require that the devices
send ¢ a message when the wine bottles have indeed been placed under the tap. These messages
causally relate the broadcast from p to that from ¢, and OBCAST’s can then be used to enforce
the desired ordering. In general there will be little or no occasion to order asynchronous broad-

casts that are not potentially causal. Thus the OBCAST is strong enough for most applications.

Note that the accuracy with which olabel’s represent the dependency between broadcasts
could limit concurrency: if B precedes B', OBCAST will deliver B first even if the semantics of B

and B’ are such that they are actually independent.

3.3. Broadcasts in the presence of failures and recoveries

In fault-tolerant systems, it is frequently necessary for the members of a group of processes
to be able to monitor the status of one another. They can then take actions based on failures or
recoveries of group members. As an example, consider a fault-tolerant server that is implemented
using a group of processes as follows. A request for the service is broadcast to all the members of
the group. The operational process having the smallest ID responds to the request. For this
implementation to function correctly, it is necessary that all the members of the group have the
same view of which members are operational. Otherwise no member may respor.d (as may happen
if all operational members believe that a failed process with a smaller ID is still opcrau‘onai), or
more than one member may do so (if an operationa] member believes that a process with a
smaller ID has failed when it has not). Further, if there has been a change in the status (opera-
tional / failed) of a member, it is necessary for all the processes to agree on whether a request
should be handled before or after the change in status, so that they may consistently decide on
which process should respond to the request. Although these problems could be-addressed by run-
ning an agreement protocol each time a failure or recovery is suspected, and / or by executing a
consensus protocol before rasponding to any request, it would be expensive and complex to do so.
A simpler method, described below, is to provide a process group abstraction having the property
that changes in the group membership (including failures and recoveries) are ordered with respect
to ongoing broadcasts.

In our system, each process p is initially in a process group G, containing only itself. A pro-
cess p can join or withdraw from any process group G using the primitive GBCAST (action, p, G),
where action is cither join or withdraw. Each member of a process group maintains a process

group view, giving the current membership of the group. Invoking GBCAST results in a message

being broadcast to all the members of the group informing them of the action. Upon receipt, the
process group view of cach member is updated accordingly,. GBCAST's are atomic and are
ordered in the same way relative to all BCAST's and OBCAST"s at the destinations. In particular,
it is not possible for a BCAST or an OBCAST to be received before a GBCAST by some of the
members of a process group and after the same GBCAST by other members. The consequence of
this is that a member of a process group can respond to any BCAST or OBCAST with the guaran-
tee that any other member will respond to it based on the same process group view, without need-

ing to carry out an agreement protocol to ensure this.

Failure dedsions are ordered with respect to ongoing broadcasts by simulating a
GBCAST(p_has_failed, p,G) from a failed process p to all the process groups G to which it
~clonged (this is called a failure GBCAST). If the failure is an isolated one, the GBCAST can be
issLec "V a supervisory process at the site where the failure occurred. If a site crashes, then the
software handling failure detection (Sec. 4.1) initiates GBCAST's for every prom at the failed
site. Sites receiving 1 fallure GBCAST remove the failed process from their process group view, as
for a withdraw. When a process recovers, it GBCASTSs its intention to join process groups. Thus
“wiures and recoveries appear . simple changes in the membership of process groups. An addi-
uonal property is provided for failurc GBCAST's: they are delivered after any BCAST or OBCAST
from the failed process. Thus after a process has learned of the failure of another process, it is

guaranteed to receive no more messages from L=t process.

If the fault-tolerant server described above i implemented using a process group, each
member can independently decde whether or not to respond to a request based on its process
-roup visw. The ordering properties of GBCAST's ensure that inconsistendes do not arise. More-
over, -ince all members observe the same sequence of view transitinns, members can react con-
sistently . .ailures and recoveries. The process group abstraction thus creatly simplifies the con-

struction of faui: - . -vant software.

3.4. Flush primitive

In certain situations, a process needs to know that a message has been actually received at its
destinations before it can continue. For example, consider a process that broadcasts a checkpoint
t0 a set of backup processes. If it fails while the broadcast is still in progress, the broadcast might
not be delivered to any backup (cf. definition of atomicity), and the failure handling action would
not occur. One way to address this is for a sender to request acknowledgements from the destina-
tons, and to wait untl the acknowledgements are received. Instead of having to do this expliatly
each time, a flush primitive is provided. A process calling flush is blocked until all its pending

OBCAST's have actually been delivered, and is then allowed to continue.

3.5. Group addressing

All of our protocols require that a sender expliatly name the set of destination processes for
each broadcast. A problem arises if a sender wishes to broadcast to all the members of a process
group. If the group grows after the broadcast is initiated but before it is delivered, any new
members would not receive it. A way to resolve this is for each process group member to number
its process group views sequentially. Any process can then cache (possibly out of date) process
group membership information and view numbers for groups with which it communicates. To
transmit a BCAST, OBCAST, or GBCAST to all members of a group G, the cached information
would be used to compute DESTS(B), and the view number included in the message. On delive:y,
if a recipient finds that the process group view has changed, it rejects the message. Since all rea-
pients have the same view when they receive the message, they all reject it if any does so. A

rejected broadcast can then be retransmitted to an updated set of destinations, and the cache
updated.

Some carc is needed when updating the cache, to ensure that the OBCAST delivery order is
preserved. In particular, consider three OBCAST's A % B » C, and assume that A and B have
been transmitted using incorrect destinations. If the cache is updated promptly after A is rejected,

C oould be transmitted using the corrected destinations before B is rejected and retransmitted. It

T A S A A P T O O O A T TV VI VS S .'_;-'i

— TN Wy vy

will now appear that the 8 and C are not causally ordered, and hence C might be delivered first.
This problem is avoided by invoking flush before changing the contents of a cache.

3.6. Related work

The BCAST primitive described above is similar to atomic broadcast [Chang], where the
problem is to send messages one site to all other sites in a network, with the same reception order
everywhere. Chang does not define atomic broadcast on a process-process basis, nor are other
types of broadcast considered. An interesting comparison can be drawn between this work and
that reported in [Christian], where a class of atomic broadcast protocols are developed, under
varying assumptions about the environment. The atomidty property addressed in that paper is
essentially the same as in the BCAST protocol given here. However, whereas our OBCAST proto-
col weakens the ordering property (we still call it atomic), in [Christian] a strong ordering con-
straint is taken as be part of the definition of atomidity (recall that OBCAST may not deliver mes-
sages from unrelated processes in consistent orders at overlapping destinations). In practice, we
have found OBCAST to be valuable when building a system that manages replicated data, because
it relaxes the degree of synchronization while still ensuring that processes that survive a failure are
left in consistent states. In addition, our use of GBCAST to maintain process groups is new,
although the idea of grouping processes together is not. For example, CIRCUS supports process
troupes, but in an environment subject to assumptions that simplify the broadcast ordering prob-
lem [Cooper]. Specifically, process executions are deterministic (this is not required in our work),
and if a troupe receives messages from independent sources, the message delivery order must be
the same at all members. The ADAPLEX system supports a protocol, exclude, which is used to
order replicated updates in a database system with respect to failure [Goodman], much like
GBCAST is ordered with respect to other broadcast types.

..

4. Implementation of the commmnication abstraction

This section gives implementations for the communication abstraction, targeted to a collec-
tion of computers interconnected by a local network. First, the “raw” environment is transformed
into one satisfying the desired failure and communication properdes. Next, the BCAST, OBCAST
and GBCAST protocols are given. Finally, a garbage collection mechanism is described. Figure 1

illustrates the overall system structure.

4.1. The inter-site layer
The inter-site communication layer converts halting failures and admissible communication

failures (message loss, delayed delivery, and out-of-order delivery) into a site-view abstraction,

Distributed computations
[WIM]I[M]
Assodative store
View manager
Inter-site protocol: send, status, hello
Unreliable packet transport, e.g. TCP/IP, PUP, etc.

Figure 1: Layered structure of the communication subsystem.

" T_BEAST queue .

. \ ——
BCAST arrives [BCAST queue — | Delivery P
Leeen s o | Queve”

— 4
|BCAST queue , /

—_— /

OBCASTarrives .. . s ebGse e

Figure 2: Data structures used for BCAST and OBCAST

...

PP A —

P

......

defined below. The layer provides two primitives: send(m, dest) for sending message m to site

dest, and status(m), which returns sens if the destination has acknowledged receipt of the message
or if a failure protocol has been started for the destination site, as described below. Intuitively, a
message has been sent if the future behavior of the system will be consistent with the message
having already been delivered.

The intersite layer employs a windowed acknowledgement protocol for ordered, loss-less
site-to-site message transmission. To detect failures, each site sends a “‘hello” message to all other
sites periodically; if a hello message is not received from a site within a reasonable period, it is
assumed to have failed, triggering the change of view protocol. If a site is slow to send messages,
it may therefore be forced to undergo recovery (the probability of error can be made small by
picking a large timeout interval or introducing a protocol phase to allow other sites to prevent exe-
cution of the failure algorithm). A site incarnation number is incremented each time a site recov-
ers; henceforth, the term ‘“site” always means “incarnation of a site.” Messages from a failed
incarnation are discarded, and a you are dead message is returned to the sender. Messages

addressed to a different incarnation than the current one are discarded.

4.2. View management

The view management layer ensures that each site in the system has a consistent picture of
site failures and recoveries occurring in the system. Each site has a site view, which is the set of
sites it deems to be operational, with their respective incarnation numbers. A site view is changed
when other sites fail or recover. A site view sequence, denoted v, v,, - - - is a sequence of site
views, reflecting these changes. The view management protocol described below ensures that each
operational site goes through the same sequence of site views. Later, the protocols take advan-
tage of this to recover from failures without running any spedal agreement protocols.

Each site maintains a copy of the site view sequence, initialized in some consistent way when
the system cold-starts. We assume that the sites in a view can be ordered uniqﬁely according to

the view in which they were first operational, with ties broken by site-id. The “oldest” site in this

...

R S S A

- o e ——m————— — v Y
A A IR A S IR S Rt Al Ak Sl Ao it Btk A bk Ak g dhadh 0l Bt AnA Seit S e d S Sl s And et o)

order is called the view manager, and is responsible for initiating the view management protocol
when it detects a site failure or recovery. If a site determines that all sites older than itself have
failed, it takes over as the new view manager. Note that the sequence of view managers is a
stable property: extensions to the view sequence extend the sequence of managers without chang-
ing the subsequence on which sites have already agreed.

The view management protocol is based on a two phase commit protocol. Let

Vs Yoyt , v, be the current site view sequence.

1. On detecting failures or recoveries, the view manager computes a proposed view extension

\4

pett Vewar * * " s Ve (If Do failures occur during the execution of the protocol, the length of
the extension is 1, that is, v, contains all the changes to the current site view. Failures occur-
ring during the execution of the protocol may cause the site view sequence to be extended by
more than one view, as described below.) It ceases to accept messages from site-incarnations

notinv

..., and sends the proposed view extension to the sitesin v, ,.
2. On receiving a proposed view extension, a site first ceases to accept messages from site-
incarnations notin v, _,.
a. If the site has not previously received a proposed extension, or the new one includes all the
changes (failures and recoveries) recorded in the old one, the site saves the new proposed

extension. Then, it replies to the view manager with a positive acknowledgement.

b. Otherwise, the site has previously received a proposed view extension recording events that
are not included in the new one. It replies with a negative acknowledgement, giving the
events that were missing.

3. The view manager collects acknowiedgements.

a. If all the acknowledgements were positive, it sends a commit message for the proposed

extension.

If additional failures or recoveries have been detected, or negative acknowledgements were
received, the view manager updates its proposed extension and re-executes from step 1.

If the view manager fails, a new site takes over as view manager, and proceeds as follows:

4. If this new view manager has an uncommitted view extension, the previous view manager may
have sent some commit messages before failing, It appends a new site view containing the
failure of the old view manager to its pending extension and starts the protocol from step 1.

5. If the new view manager has received a committed extension, and has no pending one, it must
assume that some sites did not receive the commit. It appends a new view to the most recently
committed extension and continues from step 1. Participants ignore a committed prefix of a
proposed extension.

To establish the correctness of the protocol, consider the cases that can arise:
1. If the view manager doesn't fail, all sites obtain the same committed view extensions.

2. If the view manager fails and any site has a committed view extension, than all sites have ack-
nowledged that extension. The new view manager will eventually commit the extension every-

where.

3. If the view manager fails after it has distributed a proposed extension to a subset of sites, and
that proposed extension is not known to the new view manager, then any site knowing the
extension will send a negative acknowledgement to the new coordinator when the protocol is

restarted, and the coordinator will then distribute it during an additional protocol phase.

The following issues arise because sites may detect failures and recoveries of other sites at
different times and in arbitrary order. First, the order in which view managers commit site views
becomes the order accepted by the system, even if individual sites may have detected failures and
recoveries in a different order. Second, a view manager may erroneously decide that a site has

failed (because it is slow to respond). In this case, all sites consider the site in question to have

''''''''''''''''

>t T et
..............

dndbed RS b oheds B oi

e

- 'v'f"',*"“"."

failed®, and respond to any message from it with a “you are dead” message. Such a site is said to
be killed, as it is forced to undergo recovery with a new incarnation number. Third, it is possible
for a site a to believe that a site b has failed, for b to believe that g has failed, and for each of
them to consider themselves as the view manager. Inthissittmﬁon,oneorboth'winbeh‘lled,
otherwise some site would have to acknowledge two contradictory views from two differcnt view
managers, which cannot happen.

Two final problems remain to be addressed. If it is desired that the system be able to

recover if all sites fail, a protocol in [Skeen-b] can be run to reconstruct the view sequence from
copies saved on non-volatile storage. Also, if network partitioning can occur, erroneous actions
can be prevented by requiring that sites cease to operate if number of operational sites in a view
drops below a quorum. O

4.3. The protocois

This section gives implementations for BCAST, OBCAST, and GBCAST, deferring garbage

' ﬁt l*'.v,f.r.v.—F -

collection issues to Sec. 4.3. The broadcast protocols order messages addressed to a process as

h necessary, and place them on the delivery queue for the process. A process removes messages
from its delivery queue in FIFO order. The protocols use other queues in which they buffer mes-

- sages before placing them on delivery queues. Figure 2 illustrates the relationship between the

L various queues.

o

4.3.1. BCAST protocol

Our BCAST protocol is based on a two-phase protocol by [Skeen-c]. The protocol maintains
a set of priority queues for each process, one for each BCAST label, in which it buffers messages
before placing them on the delivery queue. We assume that priority values are integers, witk a
process-ID appended as a suffix to disambiguate between priorities assigned by different

processes. Each message in the buffers is tagged deliverable or undeliverable. The protocol to

*This is true uniess the network becomes partitioned, that is, a group of sites continues to remain operational, but
unable to comrmunicate with the other sites. Network partitioning is considered later.

SO AP AP A = SR e g4 N N N N T W W U ey WY =¥~ 7~ w— oy~ %~ v

implement BCAST(msg, label, dests) is as follows:
1. The sender transmits msg to its d&tinatfom, using send.

2. Each recipient adds the message to the priority queue assodated with label, tagging it as
undeliverable. It assigns this message a priority larger than the priority of any message that
was placed in the queue, with the process-id of the recpient as a suffix. It then informs the
sender of the priority it assigned to the message.

3. The sender collects responses from recipients that remain operational. It then computes the

maximum value of all the priorities it received, and sends this value back to the recipients.

4. The recpients change the priority of the message to the value they receive from the sender,
tag the message as deliverable, and resort their priority queues. They then transfer messages
from the priority queue to the delivery queue in order of increasing priority, until the priority
queue becomes empty or the message with the lowest priority is undeliverable. In the latter
case, N0 more messages are transferred until the message at the head of the queue becomes
deliverable.

If a failure occurs, any site that has a message tagged undeliverable from a failed sender can
detect this by observing a change in view, and can take over as the new coordinator to complete
the protocol. It does so by interrogating participants about the status of the message. A partic-
pant being interrogated either has never received the message, or responds with the priority and
tag. The new coordinator collects responses. If any process had marked the message deliverable,
the new coordinator distributes the corresponding priority to the other processes (step 3). Other-
wise, it resumes from step 1. Note that this scheme requires that each process retain information
about messages even after they are placed on the delivery queue; garbage collection is discussed in
Sec. 4.4,

Correctness. The protocol is atomic because before any recipient tags a mcssage as deliver-

able, all destinations must have received copies of it. If a failure occurs after that, a destination

that has a copy tagged undeiiverable will complete the protocol. Thus if the message is delivered

at any destination, it will be delivered at all of them.

We now show that every message is delivered in the same order at all overlapping destina-
tons. If the priorities of any two messages were assigned by the same process, they cannot be
equal. If they were assigned by different processes, the process-ID that is suffixed can be used to
order them, should the priority values be equal. Thus every deliverable message has a unigue
priority assigned to it. Messages addressed to overlapping destinations are delivered everywhere
in this order. Note that it is not possible for the priority of an undeliverable message to be
changed to become less than that of one that has already been delivered. The final priority is the

maximum of all assigned priorities; thus a message can only be moved later in a priority queue. O

4.3.2. OBCAST protocol

Our OBCAST protocol operates by ensuring that whenever a message B is sent from a pro-
cess p to a process ¢, a copy of every undelivered message B’ that precedes B is also sent to ¢
with B, even if ¢ is not a destination for B’. Thus a message may travel from process to process
before it reaches a destination, and multiple copies could be delivered by different routes (dupli-
cates are discarded). It follows that if a message B is delivered to a process p, then copies of all
messages addressed to p that precede B also arrive with B, or have arrived earlier. Messages
addressed to p can therefore be delivered in order. We first describe a simple but inefficient

OBCAST implementation, then show how its effidency may be improved.

For each process p, thmisamusagebuffaBUFp,whid:wntaimcopiaofwgasent
to and from p, as well as copies of messages that arrive at p en route to other proceises. Every
message B in BUF, has fields /D(B) and REM_DESTS(B) associated with it. When p performs an
OBCAST (msg, olabel, dests), the message is placed in BUF,, and REM_DESTS(B) is initialized to
dests. If p € REM_DESTS(B), a copy of the message is placed on the delivery queue for p, and p
is removed from REM_DESTS(B). The process p can then continue as if the message has already
been sent. M:ssagainBUFp are later scheduled for transmission. The decision as to when this

occurs can be based on advice from higher level algorithms (a message that requires a response

.
PP | Ralala’otata a e Lo o 4 __l

»J_L‘&A_‘_Q‘_l

LW VS JRr N U SN P P W ay U ST T S G

o g 4 .

Cihafl Niadh Al Bl Stk B i S dh gt sk aens e = L G SiP S b Y S s p—— T T W Y Y VI W W W W

would be transmitted as soon as possible to minimize waiting time), or on factors like the load on
the network. We assume only that all messages are scheduled for transmission within finite time.
For now, we also assume thatacopyofanymwageplawdinBUFP remains in the buffer inde-
finitely.

A message B is transmitted from BUF, at site s to BUFQ at site ¢ as follows:

ooy

. A transfer packet <B., B,, - - - > is first created including all messages B* in BUF,, such that
8 5 B and REM_DESTS(B') is non-empty. The messages are sorted so that if B, LBJ, then
i<j.

2. The transfer packet is then transmitted from site s to site ¢ using send.

3. When the packet has been semt, for each B, that it contained, ¢ is deleted from

REM_DESTS(B,) if it was listed there.

When process q receives a packet <B,, B,, -« - >, the following is done for each i, in
increasing order of it
4. If ID(B)) is already associated with a message in BUF , then B, is a duplicate and is discarded.
5. If ¢ € REM_DESTS(B,), B, is placed on the delivery queue for ¢q, ¢ is removed from

REM_DESTS(B,), and a copy of B, is placed inBUFq.

6. Otherwise, B, is a message in transit to another process, and it is simply placed in BUFQ.

Correctness. Any process g thatreceivuamasageaddsacopyofittoBUFq. Since all
messages in BUF are scheduled for transmission within finite time, it follows that if any site has
received a message and does not fail, the message will eventually be delivered to all the destina-
tions that remain operational. Thus, the protocol is atomic.

To show that messages are delivered in the correct order, it suffices to show that for every
pair of messages B and B’ delivered to ¢, if B precedes B’, then B is placed on the delivery queue
before B’. We first prove that a copy of B will have been placed in BUF ipp 5-) When B° is first

placed there. Then any transfer packet that contains B’ will also contain 8, and B will be ordered

AR A ‘ AR D g A A) ACASARAC O AR

before B’ in it. Thus when the first transfer packet containing B’ arrives at ¢, a copy of B will
also be received. If B has not arrived in an earlier packet (and hence already placed on the

delivery queue), B will now be placed on the delivery queue before B°.

It follows from the definition of the relation precedes that if B precedes B’, there is a
sequence of OBCASTS B=B,B.,--,B,=B' such that for all i, 0<isn, B_, &B,
SENDER(B;) € REM_DESTS(B,_,), and B,_, is received at SENDER(B,) before B, is sent. The
proof that a copy of B willhavebecnplamdinBUmewhan' is first placed there is by
induction on n, the length of the shortest sequence satisfying the properties above. If n = 0,
B = B’, and the result follows immediately. Assume that the hypothesis is valid for n = k. If
n =k + 1, consider the messages B and B,. By the induction hypothesis, a copy of 3 will have
been placed in BUme,‘) when B, is first placed there. Hence, any transfer packet carrying a
copy of B, will also cary a copy of B. We know that B, &B,_,,
SENDER(B,.,) € REM_DESTS(,), and B, is received at SENDER(B,,,) before B, , is sent.
Hence, a copy of B will arrive at SENDER(B, ..,), and be placed in BUFMR(,”J before B, _, is
delivered. This gives us the required result. O

There are a number of ways in which the protocol above can be optimized:

® Although the protocol was stated in terms of packets sent from process to process, these pack-
ets could be combined to form larger inter-site packets. One inter-site packet could suffice to
transfer messages from processes at one site to all destination processes at another. The
packet reception rules would be amended to deliver ail the messages in a packet that have local
destinations at once, and to correctly update the associated PBUF's.

o Rather than keeping a copy of a message in the buffer of each process at a site, the buffers

comdcontainonlypointcrstoa.wmmonm&agepoolforallprowaatthcsamesite.

® To avoid sending a copy of the same message from process p to process ¢ more than once, a

field SENT_TO(B) can be associated with cach message B and updated each time a packet con-

>

r
[
ey

T—— MM At il el At i M i Bl s S AL ML B SR A Sl Ane ol S e a0 MAR ML S e Sedcuter g e oon- aesae

taining the message is sent. The packet generation rules can then be further amended to
include B in a packet to a site only if it has not already been sent there.

The problem of deleting a message after it has reached all its destinations (REM_DESTS

becomes empty) is discussed in Section 4.4.

4.3.3. GBCAST protocol

A GBCAST(action, p, G) must be ordered relative to other GBCAST's to G, as well as rela-
tive to BCAST's and OBCAST’s. In addition failure GBCAST's must be delivered after every mes-
sage from the failed process. These aspects are treated as separate parts in the description of the

protocol, then optimizations yielding a more effident implementation are given.

The first part is carried out only for failure GBCAST’s, and ensures that all messages from a
failed process are ordered before the GBCAST. Say that the process that failed is f.

1.1 The process p running the protocol sends a message to all processes in the system, informing
them of the start of the failure GBCAST for f.

1.2 A process ¢ receiving this message schedules for transmission any message B in BUF, sent by
f that has a process in G in REM_DESTS(B). It then waits until the status of these messages
turns to sent.

1.3 If q belongs to G, q waits until all BCAST's from f have become deliverable. This will hap-
pen eventually because some process (perhaps q itself) will take over to complete the BCAST
protocol.

1.4 The process ¢ then sends an acknowledgement to p. This part of the GBCAST ends when
acknowledgements have been received from all operational processes.

The second part of the protocol is based on the BCAST protocol, and orders GBCAST's to
the same group relative to one another, and GBCAST's relative to BCAST"s.

2.1 The process p distributes the message action to the members of the process group G.

" TR TR T W W -
-r-v,_.r*s'vvv AT RN AT o o A o et S AN AP i St i g R A I A e e e S " Ml bt ad Bl ad L8 L NE L 2~

2.2 A recipient ¢ places copies of the message on all BCAST priority queues, tagging them

undeliverable. We assume that there is always a (possibly empty) queue for every possible
BCAST label. It assigns it a priority greater than that of any message that has been placed on
any of the BCAST queues, and sends this priority value back to p (all copies receive the same
priority).

2.3 After collecting the responses, p sends the maximum of all the values it received to the
members of G, which change the priority accordingly and resort their queues. Unlike in the
BCAST protocol the messages are not tagged deliverable. Thus when a GBCAST message
reaches the head of a BCAST priority queue, further delivery of messages from that queue is

suspended.
2.3 When the GBCAST message reaches the head of aZ BCAST queues, the next part is begun.

The third part orders GBCASTs relative to OBCAST’s. We assume that the OBCAST proto-
col is modified to maintain a list IDlist, for each process p, containing ID’s for OBCAST messages
that have been placed on the delivery queue of p. For now, assume that the list includes the ID’s
of all such messages. The goal of the protocol is for processes in G to agree on a list before of
OBCAST messages ordered before the GBCAST, and to deliver messages accordingly. The third

phase executes as follows.
3.1 The process p initiating the protocol contacts all members of G.

3.2 A partidpant q establishes a FIFO wait queue (unless one already exists). Until the GBCAST
protocol completes, messages that would have been placed on the delivery queue at ¢ by the
OBCAST protocols are placed on this queue instead.

3.3 If any message B in /Dlist, is in PBUF, and the remaining destinations of B include sites in

G, ¢ must assume that those sites have not yet received a copy of B. Any such message is

scheduled for transmission to the destinations in REM_DESTS(B) () G, and ¢ waits until

their status changes to sens. [t then sends DDlist, to p.

akame ol t %4y s

...
T v T Tt T e oA P O T D P T
............................

..........

3.4 After collecting these messages, p merges all the lists it received, calling the result before. It
sends before to all participants. When a participant ¢ receives the before list, any message
that was transmitted during Step 3.3 must have arrived, and is on the wait queue unless it has
already been delivered. Similarly, during Step 1.2, all OBCAST messages from a failed pro-
cess were either placed on the wait queue or delivered.

Finally, messages are transferred in order to the delivery queue, and normal delivery
resumes:

4.1 Each particdpant q does the following. For each OBCAST B in its wait queue, if B is listed in
before, or if there is some B’ in before and B % B’, or if the GBCAST is for a failure of pro-
cess f and SENDER(B) = f, then B is added to before.

4.2 Any messages in the wait queue which are also listed in before are now transferred to the
delivery queue, preserving their relative order. The GBCAST message is then placed on the

delivery queue.

4.3 If there are no other GBCAST protocols in progress, p appends the contents of the wait

queue to the delivery queue and deletes the wait queue.

4.4 The GBCAST messages are removed from the heads BCAST queues, allowing BCAST mes-

sages to be delivered.

If a failure occurs, any participant can restart the protocol from the beginming. As with
BCAST, particpants reply using the deliverable priority of the GBCAST message if they know it;
all other steps of the protocol are idempotent and can be repeated without ill effect.

Correctness. GBCAST is atomic because no participant can deliver a GBCAST message until

all have received it, hence if any delivers it, all can restart the protocol.

GBCASTs to the same process group are ordered in the same way at every member because
each GBCAST is assigned a unique priority value (Step 2.3), and is delivered in this order.

...
..

VL T e |

...............
.........

LTRPEES PO S P Iats

Y

F _?C.A_ST queue ‘|

‘

- - ——— . g
BCAST arrives 4BCAST queue —= | Wait ' Delivery P
skt sl il I By <77 7| queue i
. =
,,_ECAS_T queue e ousT | A
//</ . i o
=

GBCAST arrives “——

OBCAST arrives s s s A e e~ « PR & P8UFy

GBCAST's are ordered consistently with respect to BCASTs because a-copy of the message is

placed on each BCAST queue, and the second part of the GBCAST protocol is the same as the

BCAST protocol.

To show that GBCAST s are ordered in the same way relative to OBCAST's, we must show
that if an OBCAST is delivered before the GBCAST at a member of G, it will be delivered before
the GBCAST at any other member that it is sent to. The OBCAST s delivered before a GBCAST at
a process g are those placed in the delivery queue before the wait queue is established, as well as
the OBCAST"s in the before list that are delivered in Step 4.2. Now, any OBCAST in the delivery
queue before the wait queue is established must be in [Diist, in Step 3.2 and is hence in the
before list. Also, any message delivered in Step 4.2 is in the before list, or precedes some mes-
sage in the before list. It suffices to show that amy message delivered by ¢ arrives in the wait
queue of any other destinations in G before Step 4.2 is executed there. This, however, is immedi-
ate because a copy of any such message will have been in PBUF, during Step 3.3, hence ¢ did not
respond until it had confirmed their delivery.

Selecting some of the messages from the wait queue to be delivered ahead of others could
conceivably upset the OBCAST delivery order. But, assume that OBCAST B is before B’ on some

..........

Py T e —-

P

B e

T DAY

o TR TR TR TR TR R TR TR Il At Bt A A A U S Shae e Y T N TR W T ¥ Y Y T WYY YT W W w v, v

wait queue, and that B’ is delivered during step 4.2 but B is not. Clearly, -~ B & B’, since Step
4.1 would otherwise have listed B in before. Thus, the OBCAST delivery constraints are
rgspected.

Observe that because of the flush performed during part 1, the protocol does not begin exe-
cuting until all messages from a failed process f have been delivered to their destinations. Hence,
such messages are either on the delivery queue for the destinations or on a wait queue, if some
other GBCAST protocol was executing at the time. Step 4.1 then ensures that that the GBCAST is

delivered after any other message from f. This observation completes the proof. O

Optimizations. The GBCAST protocol can be optimized simply by merging steps together.

Moreover, the flush that is done in part 1 could be invoked directly from the view management

protocol - then, instead of doing this on a per-process basis, which would be extremely costly, it
would occur on a per-site basis, at relatively low cost. If this were done, a 2 round protocol would
result, not counting the cost of the flush, and performance should be acceptable. A method for

controlling the length of [Dlist’s is given below.
4.4. An associative store and distributed garbage collection facility

We now define an associative store mechanism, which is used by the above protocols to
manage the information associated with message id’s. Each site s maintains a local store denoted
STORE,. The contents of a store are tuples (id,alist), where id is a broadcast ID and alist is a list
of zero or more attributes. A set of operations are defined on the store for each site (there is no
facility for accessing the store at a remote site). The operation st_sdd(ld) creates an empty list for
the designated ID, st_insert(id, aname, value) adds an attribute with name aname and value value
to the list, st_find(id, aname) looks up an attribute, and st_delete(id, aname) deletes an attribute
(but not the ID). The specal attribute DISPOSABLE is inserted when an entry will no longer be
referenced. In the BCAST and GBCAST protocols, an ID becomes DISPOSABLE at a site running

(or completing) the protocol after it transmits commit messages. In the OBCAST protocol, an ID

becomes DISPOSABLE at a site when the corresponding REM_DESTS field is empty.

We now give a method for deleting information associated with a message-id after the ID is
marked as DISPOSABLE by sore site. The method defines a delete action which is taken when an
ID is discarded; at the end of the section we give delete actions. Since copies of messages may be
transmitted to a site while it is running the garbage collection protocol, and message ID’s are used
to avoid delivery of duplicate copies of messages, some care must be taken to ensure that a copies
of a message will not be received after its ID is deleted. Accordingly, the algorithm employs an
additional field assodated with each message ID in the store, DONT_SEND, which is initially null

and subsequently lists sites that have run the protocol.

1. Periodically, each site @ makes a list of tuples, (ID, DONT_SEND) for DISPOSABLE ID's. It
invokes the delete action for each listed ID, and then, to each site s, transmits a list {ID,} con-

taining all the DISPOSABLE ID, satisfying ~ s ¢ DONT_SEND,.

2. On receiving a list <ID, ID. - - - >,site b takes the following actions.

a. If ID, is not already in STORE, , it is added.

b. The REM_DESTS field associated with the ID is made empty and it is marked as DISPOS-
ABLE. This ensures that b will not send additional copies of the message and that the ID

will eventually be deleted from STORE,.
c. It adds a to the DONT_SEND field associated with this ID in STORE,.
; After processing the list, b sends an acknowledgement to a.
\ .

3. After receiving acknowledgements from all operational sites, a deletes the ID, the
- DONT_SEND field, and and other information associated with the ID from STORE,. The
b DONT_SEND field prevents a site from adding an ID to its store after deleting it, i.e. when

some other site executes the protocol to delete the /D from its own store.

BCAST and GBCAST have no special delete action - the priority information that they saved

is discarded automatically when the protocol completes. The delete action for OBCAST is to

remove the message ID from the idlist of any processes that have received a copy of it, and to

delete the message itself from PBUF,, for any processes p at the site. Thus, the length of an idlist
will be determined by the number of active broadcasts, which should be small.

Correciness. This follows because no site deletes a message-id until all operational sites
have sent acknowledgements in step 2, but after step 2.c duplicates of a message will no longer be

sent to a site that has run the protocol. O

4.5. OBCAST flush implementation

Flush is invoked in two ways, each having a slightly different implementation. When a pro-
cess invokes flush, the OBCAST algorithm is such that if any OBCAST B is active, a copy of B will
be present in PBUF;, for any process p that might take actions causally dependent on the delivery
of B. Hence, it suffices to schedule all messages in PBUFP for transmission, and then wait untl

all have been sent to the destinations that remain operational.

If flush is invoked for a group address change, a stronger condition is needed, namely that
there is no active OBCAST that could still be rejected. This is satisfied by doing an OBCAST
requesting that group members return an acknowledgement. If this OBCAST is ordered after all
messages that have been sent previously, the acknowledgement will not be received until the mes-

sages in question have all been accepted.

5. Applications

The communication subsystem proposed here is being implemented in the ISIS system, under
development at Cornell. SIS is a distributed computing system that transforms non-distributed
abstract type specifications into fault-tolerant, distributed implementations, called resilient objects
[Birman-a]. Resilient objects achieve fault tolerance by replicating the code and data managed by
the object at more than one site. The resulting components synchronize their actions to provide
the effect of a single-site object. In the presence of failures, any ongoing operation at a failed
component is continued by an operational one. Also, a resilient object continues to accept and

process new operations as long as at least one component is operational. Finally, failed com-

Py

N ——rr——

ponents recover automatically when the site at which they reside is restarted.

The initial version of ISIS used a simple communication layer that provided an atomic broad-
cast with no ordering properties. This was unsatisfactory for two reasons. First, the implementa-
tion grew very complex because of the need to include, in various parts of the system, protocols to
preclude orderings that might lead to inconsistencies, espedally in the presence of failures.
Second, the high degree of synchronization resulting from these protocols lowered system perfor-
mance. When reimpiemented using a preliminary version of the primitives presented here, the
system became much simpler, and performance improved due to the highly concurrent nature of
the primitives. Below, we describe some areas in which these benefits were obtained.

5.1. Updating replicated data

When replicated data are updated, care must be taken to ensure that the updates occur in the
same order at all copies. Otherwise, the copies can become inconsistent. In an environment
where no ordering properties are guaranteed on broadcasts, this is done by preceding an update to
a local copy by a broadcast to the remote copies and waiting for confirmation from the remote
copies that the update has been carried out, before allowing another local update~ to occur. This
kind of synchronization means that the rate at which updates can occur is limited by the time it
takes for a message to travel a round trip, which can be unacceptably high. If OBCAST's are
instead used to instruct remote copies to perform updates, an update be considered complete
when the iocal update is carried out. No further synchronization is required, because the proper-
ties of OBCAST's guarantee that all the copies receive the update, and do so in the required order.
The rate at which updates can now be performed is now the rate at which local updates can be
done, which is usually much higher than the previous case. At the same time, the protocol for
carrying out a replicated update is much simpler, as it consists of a single OBCAST. An effident
way of labeling such OBCASTS is described in Sec. 5.4.

...................
...................................

5.2. Coordinator-cobort computations

In ISIS, one of the components of a resilient object is designated as the coordinator for the
execution of a particular cperation. The others, its cohorts, act as passive backups. If the coordi-
nator fails, a cohort takes over as and restarts the request (details are given in [Birman-b] and
[Birman-c).

The process group abstraction facilitates the implementation of coordinator-cohort computa-
tions. The components of a resilient object is placed in the same process group, and each request
to perform an operation is OBCAST to all the components. Since each component has the same
process group view, they can independently decide on a unique coordinator for the request by
using the same algorithm, without running an agreement protocol’.

The GBCAST ordering properties prevent inconsistencies from arising when failures or
recoveries occur. After a failure, cohorts can pick a new coordinator consistently, and because all
have received the same messages from the previous coordinator, the object data is in a consistent
state at all components. When a component recovers, it uses GBCAST to rejoin the group, hence
all the operational components receive the GBCAST in the same state and any can transfer data to

reinitialize the recovering component.

5.3. Managing locks on replicated dats
Lock-based concurrency control is the most common method for obtaining serializability
(Bernstein]. The usual locking method for replicated data is to obtain write locks on all copies and
rcadlocks;morﬂyone. This means that if the site at which a read lock is obtained were to fail,
all information about this read lock would be lost. Hence if the recovery scheme requires that the
reads and writes be serialized in the same way after a failure as before, information about read
locks must be replicated. In the ISIS recovery scheme, as in many that use a saved state for
recovery, it is necessary for the executions to be deterministic, and a change in serialization order

7n ISIS this is done as follows. If a request arrives from site s, the coordinatar is the site ¢ in the process group
view manimizing absrt - 5). This tends to locate the coardinator for a camputation at a same site as the site where the
request anignated, which in /SIS improves response ame. :

A L N e T e e T AR s —— Pt S S S e s s s deie . Saee Sne Bie B Mo ey g e me ey e A oo

would violate this. However, acquiring read locks at all sites would be inefficient. Instead, the
ordering properties of the broadcast primitives are used to obtain the same effect.

A read-lock is first obtained locally. Then, a read lock registration message is OBCAST to
the other copies of the data item. The sender immediately continues execution, as if its read-lock
were already replicated, although the message may not actually have been delivered anywhere. If
the sender fails before any message leaves the site, the effect is as if the read never occurred
(recall that a failure destroys all information at a site). If, on the other hand, a site has received
any message m sent after the lock acquisition, the GBCAST protocol for the failure will ensure that
the read-lock registration message is delivered before the failure is detected by the process manag-
ing the lock. Thus, the read-lock behaves like a fully replicated one.

Unlike a read-lock, a write-lock must be explicitly granted by all components of an object.
However, a deadlock could occur if concurrent write-lock requests on the same data item are
granted in different orders by different components. This problem can be avoided by using
BCAST's for write lock acquisition requests. If the data item name is used as a BCAST label, write
lock requests on the same data item are ordered in the same way at all components, and deadlock

is avoided.

5.4. Performance issues

A prototype communication layer similar to the one described here has been operation since
Jan. 1985 [Birman<], and is being reimplemented to correspond exactly. Two performance meas-
ures are of interest. One, the response time for a typical request, measures the critical path
before a reply can be issued to a caller. We considered a fault-tolerant object implemented using
ISIS and distributed to 3 sites (SUN workstations). A request that acquires a replicated write-lock,
updates a replicated data item, and then responds to its caller sends its reply after about .6
seconds; additional updates delay the response by .1 seconds each (the difference reflects the one-
time cost of concurrency control). When /SIS is run in a synchronous mode, verifying that each
update has actually completed before the coordinator undertakes any subsequent operations, such

1

AN Y

Mo Ant g 0 a me o dan e o s o o '“--."‘ ,m - P " R P P P oy

a computation requires 1.5 seconds, with additional updates requiring .5 seconds each. Moreover,
the performance of the synchronous version degrades as the number of sites increases, while the
concurrent version gives the same performance regardless of the number of participating sites.
Thus, concurrent communication primitives can have a substantial impact on performance.

A computation can remain active long after replying to the process that initiated it if a high
level of concurrency is achieved. To isolate the effect of concurrency on the above figures, the
total elapsed time between the issuing of the request and the true termination of the operation can
be measured. In /SIS, we find that a single asynchronous updaté terminates after about 1 second,
with subsequent updates delaying termination by about .3 seconds each, and with linear degrada-
tion as the number of sites increases.

The delay to termination would not be an issue unless computations at different sites com-
pete for a lock, which should be rare in /SIS. Thus, for ISIS and for many other applications, the
communication primitives described in this paper permit extremely good performance — almost as
good as for a non-distributed system performing the same operations - but with the ability to

tolerate failure as well.

6. Future Work

A weakness of the work described in this paper is its inability to permit continued operation
in the presense of partitioning failures, when two or more subgroups of operational sites form,
within which communication remains possible, but between which it is degraded or impossible.
We are now investigating the adaptation of methods from [ElAbbadi-a] [ElAbbadi-b] to address
this issue. Also interesting is the possibility of integrating communication primitives with syn-

chronized clocks, for use in shared memory systems and tightly coupled multi-processors.

7. Conclusions

Our experience implementing a substantial fault-tolerant system lead to insights into the pro-

perties desired from a communication subsystem. The primitives described in this paper present a

N W W W W eI yery '.7--1
. - . e T T T T TR TR WG

simple interface, achieve a high level of concurrency, and are applicable to software ranging from
distributed database sysiems to the fault-tolerant objects provided by ISIS. By respecting desired
event orderings, they introduce a desirable form of determinism into distributed computation. A
consequence is that high-level algorithms are greatly simplified, reducing the probability of error.
We believe that this is a very promising and practical approach to building large fault-tolerant dis-
tributed systems, and the only one leading to confidence in the correctness of the resulting
software.

8. Acknowiedgments

P

Particular thanks go to Amr El Abbadi, Ozalp Babaoglu, and Thomas Raeuchle for their
many comments. We are also indebted to Jay Misra and Mani Chandy for discussions and com-
ments about an early draft of this paper, and to Dale Skeen, who helped found the ISIS group in

St S g s,

1982, and was responsible for the ordering algorithm used in the BCAST protocol.

9. References

(Berustein] Bernstein, P., Goodman, N. Concurrency control algorithms for replicated database systems. ACM
Computing Surveys 13, 2 (June 1981), 185-222.

{Birman-a) Birman, K.. Dietrich, W, EL. Abbadi, A., Joseph, T., Raeuchle, T. An overview of the ISIS project.
Newslerter of the [EEE Special Interest Group on Distributed Computing. June 198S.

(Birman-b} Birman, K., et. al. Implernentng fault-tolerant distributed objects. /EEE TSE-11, 6, (June 1985), 502-
508.

[(Birman-c} Birman, K. Replication and availability in the /SIS system. Dept. of Computer Science, Carnell Univ.,
TR 85-668, March 1985. To appear: ACM [0th SOSP.

(Chang] Chang, J, Maxemchuk, N. Reliable broadcast protocols. ACM TOCS 2, 3 (Aug. 1984), 251-273.

[Cooper] Cooper, E. Replicated distributed programs. Ph.D. dissertation, Computer Science Department, Univ.
of California, Berkeley (May 1985).

(Cristian] Cristian, F, er al. Atomic broadcast: From simple message diffusion to Byzantne agreement. [BM
Technical Report RJ 4540 (48668), Oct. 1984.

(ElAbbadi-a) El Abbadi, A, Skeen, D., Cristian, F. An efficient algarithm for replicated data management. Proc.
PODS, Pordand, OR, March 1985.

(ElAbbadi-b] El Abbadi, A, Toueg, S. Handling partitioning in distributed database systerns. Farthcoming.]

[{Goodman] Goodman, N, et al. A recovery algarithm for a distributed database system. Proc 2nd ACM PODS,
Atlana, GA (March 1983), 8-15.

(Lamport) Time, clocks, and the ordering of events in a distributed system. CACM 21, 7, July 1978, 558-565.

PPy

"

PPy PN

(Schlicting}] Schlicting, R, Schneider, F. Fail-stop processors: An approach to designing fault-tolerant distributed
computing systems. ACM TOCS 1, 3, August 1983, 222-238.

(Skeen-a) Skeen, D. Crash recovery in distributed database systerns. Ph.D. dissertation, Department of EECS,
U.C. Berkeley, 1980. {

P e

AN AL M

{Skeen-bj}
[Skeen<]

Skeen, D. Determining the last process to fail. ACM TOCS 3, 1, Feb. 1985, 15-30.
Skeen, D. Unpublished commmunication.

w, e, a e e e e e e

- ST, Pt T Tt et Yt T e
.t et IR R WA IR T R
P W AP DA IR AT IR WU, T i, WA AT TS DR U

